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We have investigated experimentally the swirling flow between a stationary and a
rotating disk with fixed closed end. In order to perform velocimetry measurements we
implemented a heterodyne photon-correlation setup and obtained the three compo-
nents of the velocity field at different positions along the gap between the disks. We
compared the results for two different Reynolds numbers with a numerical solution of
the similarity equation, to investigate the relation between the finite and infinite disk
solution, theoretically studied by Brady & Durlofsky (1987). For the measurements
performed at Re below the critical Reynolds number Rec =80, we found that the
two solutions agree very well near the axis of rotation. Above Rec we found that
this quantitative agreement no longer holds, but the flow qualitatively resembles the
Batchelor solution, with two boundary layers and a core rotating as a solid body.
Our results validate the theoretical prediction for closed-end finite disk flow.

1. Introduction

The flow driven by parallel rotating disks, often called swirling flow, has been a topic
of great interest for many decades. It has technical applications in several different
fields, such as viscometry, lubrication, rotating machinery, geophysics, crystal growth
processes. From a theoretical point of view, this interest is due to the existence — for
the flow driven by rotating disks of infinite extent in an unbounded fluid — of an exact
representation of the Navier—Stokes equations as a system of ordinary differential
equations. Thus, measurements of the velocity field of the flow are of interest to
validate this theoretical solution.

The first work on the rotating disk flows is that of von Karman (1921), who theore-
tically studied an incompressible flow over an infinite rotating disk in a fluid that
is stationary far from the disk. By assuming a self-similar, axisymmetric velocity
profile, he found that the Navier—Stokes equations could be reduced exactly to a set
of nonlinear ordinary differential equations, called similarity equations. Numerical
solution of this system shows that the disk pulls the fluid radially outward in a region
above the disk and draws it in axially, as one would intuitively expect from centrifugal
effects and continuity in the flow. Batchelor (1951) and Stewartson (1953) extended
the study of von Karman to the case of two infinite, coaxial rotating disks a distance
H apart. For this geometry the von Karman similarity principle still applies and a
Reynolds number (Re) based on H — the only characteristic length of the problem —
is introduced. In the case of one fixed and one rotating disk, they found different
solutions to the problem: Batchelor, based on qualitative arguments, predicted a flow
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with two separated boundary layers close to the disks and a core rotating as a solid
body; while Stewartson found only one boundary layer on the rotating disk and a
non-rotating core. In fact, their solutions are two of several solutions that appear as
the Reynolds number is increased: Zandbergen & Dijkstra (1987) showed that non-
unique solution structures appear as Re increases above ~55. So the Batchelor solution
is valid at low Reynolds number, while Stewartson’s exists for Reynolds numbers
over 200.

The case where the radius of the disks is finite is of practical importance and
experimental verification of the similarity solution can only be obtained with finite
disks. So the question of whether and to what extent the similarity solution occurs in a
finite radial geometry is of interest. Brady & Durlofsky (1987) studied numerically the
flow between finite but large disks, distinguishing between a closed and an open end
condition. They showed that the finite disk and the similarity solutions generally
coincide over smaller and smaller portions of the flow domain with increasing
Reynolds number, for both end conditions.

In this work we use the heterodyne light beating spectroscopy technique
(Cummins & Swinney 1970; Drain 1980) which was developed in the 1960s: here
we improve the technique by implementing a novel setup (Salmon et al. 2003) which
uses an optical fibre collecting device, ensuring a better optical matching of the two
interfering beams. Through this technique, we determine the vectorial velocity field of
a Newtonian fluid (water—glycerol mixture) in a swirling flow. More specifically, we
study the stationary, non-trivial flow between a rotating and a fixed disk with closed
end condition as a function of the position along the gap. Bien & Penner (1969) have
already studied the swirling flow under these conditions and, using the heterodyne
light beating spectroscopy technique, measured the azimuthal velocity component.
Dijkstra & van Heijst (1982), using a stereophotography technique, measured the
azimuthal and radial components of the velocity field: they found that the fluid far
from the disk end follows the Batchelor solution for infinite disks. In our work we
have measured all three velocity field components: these data, for the flow between
two rotating disks (having a radius much bigger than the spacing between them),
were previously unavailable in the literature (Prasad & Adrian 1992). Our aim is
to experimentally show the validity of Brady & Durlofsky’s solution for closed end
conditions and small Reynolds number. The heterodyne photon-correlation technique
we implemented can also be used to investigate complex fluids under shear (Larson
1998), which show non-Newtonian behaviour such as shear thinning, shear banding
and wall slip: these phenomena can be detected through local measurements of the
velocity field (Salmon et al. 2003).

2. Problem formulation

We denote the radius of the disks by L, the spacing between them by H, the
angular velocity of the rotating disk by £2, the fluid viscosity by n and its density by
0; the Reynolds number is Re = p$2 H? /5. We will use a cylindrical coordinate system
(r, @, z) with the z-axis coinciding with the axis of rotation.

For disks of infinite radius (L/H — o0), according to the von Karman similarity
principle, the Navier—Stokes equations admit an exact solution of the form

’U,.(I", Z) = _%rf,(Z),
v.(2) = f(2), (2.1)

v,(r, z) = rg(z),
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where v,, v, v, are the radial, axial and azimuthal components of the velocity field.
The similarity functions f and g satisfy a system of two ordinary differential equations
(reported in Brady & Durlofsky 1987) with no-slip boundary conditions at both disks,
which can be solved numerically.

For the flow between finite but large disks Brady & Durlofsky have written the equa-
tions of motion and continuity (obtained with scaling arguments), the no-slip boun-
dary condition in z and the correct boundary conditions in r for the two different end
conditions (closed and open). Solving the system numerically, they found that near
the outer edge the effect of the end will be important and the flow will not be of the
similarity form; in particular, the closed end affects the flow much more than an open
end, where the flux lines leave the disk region. As the axis of rotation is approached,
however, the effect of the end will decrease and the solution may approach the
similarity form. The end effect also depends on Re: on increasing Re the end effect
becomes more important and the region where the solutions are alike gets smaller.
Thus it is of interest to find for which Reynolds number, at a given radial position,
the finite-disk solution resemble the similarity solution. For example, for Re =40, they
found that the finite-disk solution agrees with the Batchelor solution (meaning that
the two solutions differ by less than 2%) in a region extending to r =0.35L for an
open end, and to »r =0.2L for a closed end. For Re =60 both the open- and closed-
end flows still agree with the Batchelor solution up to about r=0.1L, while at the
critical value Rec = 80 the two solution agree only in the limit »r — 0. At Re > Rec the
effect of the end propagates all the way to the axis of rotation and there is no longer
agreement with any similarity solution for both end conditions. However, even for
Re > Rec, there is a qualitative resemblance to the similarity solution which is deter-
mined by the type of end condition: the open-end flow tends away from the Batchelor
solution and toward the Stewartson one, while the closed-end flow continue to
resemble the Batchelor solution, with a definite core rotation, up to much higher Re.

In this work we measured the velocity field along the gap, at a given radial distance
(in the vicinity of the axis), for two different Reynolds number: one greater than Rec
and one less. By comparing our results with the corresponding numerical solution for
infinite disks, we show that Brady & Durlofsky’s predictions hold.

3. Experimental set-up

The experimental technique we implemented to measure the velocity field in the
swirling flow is the heterodyne photon-correlation, which enabled us to measure all
three components of the velocity field. Heterodyne photon-correlation is a dynamic
light scattering experiment (Berne & Pecora 1976): a monocromatic wave of visible
radiation is emitted by a laser and impinges on the sample; the scattered light of
intensity /; is made interfere with part of the unscattered radiation (representing a
local oscillator) of intensity I;o, on the sensitive element of a photomultiplier; finally
a correlator calculates the time-correlation function of the intensity of the radiation
hitting the photocatode:

(i(0)i(t)) ~ (|E£o(0) + E;(0)*| Eo(t) + E(1)]%)

where E is the electric field of the radiation of intensity /. Choosing the experimental
condition I > I, it is easy to show (Cummins & Swinney 1970) that the correlation
function reduces to

(i(0)i(t)) ~ I}y + 2IroRe[(E. (1) E(0))].
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FIGURE 1. Scattering geometry: k; is the incident wave vector, Kk, the scattered one, q the
exchanged wave vector, v, is the radial component and v, the axial component of the velocity
field.

For randomly distributed particles and neglecting the transit time effect, we can write
(E(DE,(0)) = <Z W(r,->e“*'“f‘”'f‘°”> (3.1)
J

where W(r) represents the scattering volume profile (Ricka 1993). In a sufficiently vis-
cous fluid and for short time scales, particles will move with the fluid velocity field v
and with negligible Brownian displacement: denoting as v, the fluid velocity field in
the centre of the scattering volume, where we take the origin for the spatial coordinate
r, we can write

ri(t)—r;(0) =vot + Vor-rt (3.2)
with w = Q- v, q being the scattering vector: q=Kk; — K, where k; and Kk, are the wave

vectors, respectively, of the incident and scattered beams. (See figure 1.) Substituting
(3.2) in (3.1) gives

Re[(E:(t)E4(0))] oc W(Var)cos(q - vot) (3.3)

where W is the spatial Fourier transform of W and therefore vanishes when ¢t > 1/
L|Vo| with L the scattering volume size. It is easy to realize that, on the time scale set
by the decay of W, our assumption of a negligible Brownian displacement is verified.

Thus, knowing the q vector, we can calculate the projection of the velocity field
v over q from the period of the measured, oscillating correlation function. The fact
that, due to the presence of the shear, there is a velocity difference in the flow inside
the scattering volume (Fuller er al. 1980; Tong, Goldburg & Chan 1988) results in
the modulation of the oscillation by the decaying function W(Vwt).

The cell we used (figure 2) is made up of an optical window, which represents the
stationary plate, and a disk of radius L =5cm, which is made rotate at an angular
velocity ranging from 1 Hz to 100 Hz by a DC electrical motor with a permanent mag-
net. The rotating disk is made of glass to avoid uncorrelated noise due to the reflection
of the incident beam on the disk surface. The rotational axis is in the horizontal direc-
tion and the distance between the disks is H =1.45cm. To allow the disk to rotate,
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FIGURE 2. Schematic illustration of the cell used in the experiment. It has cylindrical symmetry
around the OO’-axis. The fixed disk (A) is a BK7 optical window, the rotating disk (B) is
made out of glass with a black layer behind to minimize stray light. The body of the cell is
made of brass coated by a thin chromium film.

the distance between the glass disk rim and the external wall of the cell is 3mm < H,
thus we can approximate the end of the disks as closed.

The Newtonian sample we used is a suspension of latex spheres (made of poly-
styrene) of diameter 1.05um in a solution of glycerol and water: the latex particles,
having a large polarizability mismatch, will be responsible for almost all the light
scattered by the scattering volume (defined by the intersection between the incident
and the scattered beam) and their dynamics will be investigated. In the set-up we used
(figure 3), an He — Ne polarized laser beam (35 mW, 4= 633 nm) is directed, through
an optical fibre followed by a collimator (C), towards a beam splitter (BS); one of the
two beams coming from BS is directed, through a mirror (M) towards the cell con-
taining the sample (§); the other beam, representing the local oscillator, is attenuated
by a filter (4) and collected by a fibre collimator (of focal length 50 mm) followed
by a single-mode optical fibre (fi, core diameter 3.5 um, OZ Optics). The beam
scattered by the sample is collected, in the direction perpendicular to the disks, by
another collimator (of focal length 35mm) and fibre (f3) couple. Both the fibres are
polarization-maintaining and the interference between the scattered field and the local
oscillator is achieved through a fibre optics beam splitter (FOBS ), which matches the
wavefronts of the two beams. Another optical fibre (f3) propagates the interference
beam from the beam splitter to the photomultiplier, ensuring spatial coherence of
the beam on the photocatode surface. Finally, the digital signal output from the photo-
multiplier is sent to a correlator designed by the first author Di Leonardo in 2002.

To obtain a direct visualization of the scattering volume we attached the fibre f;
to the FOBS in place of f3: the scattering volume is the intersection of the incident
beam and the beam coming from f;. We measure only an average velocity in the
scattering volume and the resolution will be given by the scattering volume size: 2 mm
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He-Ne 35 mW ]

FiGure 3. Heterodyne set-up. C: collimator, BS: beam splitter, A: filter, M : mirror,
S: sample, FOBS: fibre optics beam splitter, f: fibre and PMT: photomultiplier.

in the z-direction and 3 mm along the radial and y-directions, which is small enough
if compared to the gap width H =1.42cm.

4. Results

We will now present our experimental measurements of the three velocity field
components along the gap for the different Reynolds numbers: above and below
Rec. As explained before, the measured correlation function shows oscillations at
a frequency corresponding to the velocity field projection over the scattering vector
g in the scattering volume. On making a scan along the z-direction, from one disk
to the other, the measured correlation functions have the form shown in figure 4
(open circles). Through a micrometer movement of the cell, the scattering volume is
moved along the gap in steps of Az/H =0.053, starting from the window and going
towards the disk: on the right-hand part of the figure we show the data collected on
the window side, on the left-hand part those on the disk side. An exponential decay
provides a good fit for the function W of equation (3.3), so we obtain the frequency
o of the oscillation by fitting the measured signal with an exponential decay function
modulated by a cosine: y=A + Bexp(—t/t)coswt, which is plotted as a solid line
for each measured correlation function.

We performed the scan along z in three different scattering geometries, in order to
obtain the three components of the velocity vector for each position of the scattering
volume along z. First, we fixed the Reynolds number at Re; =7.40 by choosing the
angular velocity of the disk of £2=4.22Hz and using a sample of latex spheres in
a solution of water in glycerol at a percentage of 13%. The dynamic viscosity was
measured by means of homodyne photon-correlation and using the Stokes—Einstein
formula; the corresponding kinematic viscosity is v=1n/p=1.14 x 10~*m?s~!. We
first fixed the scattering volume at the position r =1.0cm and ¢ =mr/2 (see figure 2,
taking the centre of the fixed disk as the origin of the axis); thus the oscillation fre-
quency can be identified with the sum

w; = v;|q| cos 16 + v,|q]| sin 16 (4.1)
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FIGURE 4. Measured correlation functions at fixed radial distance (r =1.0cm) for different
positions of the scattering volume along the gap. Each translation is Az/H =0.053 and each
correlation function is labelled by the distance of the scattering volume from the optical window
in units of z/H. The fitting curve is an exponential modulated cosine. The spectra shown are
for Re=Re; in the second geometry (the one providing equation (4.2)).

where 0 is the angle between the incident beam direction and the scattered beam
direction (figure 1). The second geometry is like the previous one, apart from the sign
of the angle 6, which is the opposite:

wy = v,|q| cos %9—v,\q|sin %9. 4.2)

As we are dealing with low Reynolds number, we can assume that the flow is axisym-
metric (Hewitt & Duck 1999). So thirdly we kept the last scattering geometry, but
moved the cell vertically and horizontally to bring the scattering volume to the vertical
distance r = 1.0cm from the rotational axis (¢ =0), so that the azimuthal component
of the velocity takes the place of the radial one:

w3 = v.|q| cos 36 — v,|q| sin 16. (4.3)

We calculated the scattering vector || =4nn/Asinf,/2 by measuring the scattering
angle 6; and using the known refractive index (n = 1.45) of the sample and the wave-
length 1 of the incident beam. Thus, knowing g, it is straightforward to obtain the
components v,, v, and v, of the velocity field as a function of z by solving the system
of equations (4.1), (4.2), (4.3) for each position of the scattering volume along the gap.
The results are shown in figure 5, where the velocity components are plotted in non-
dimensional units v/$2r. The radial component changes sign at z = H/2, in the centre
of the gap: by the centrifugal effect the flow is pulled radially outward in the region
near the rotating disk and is pushed inward at the other side, near the fixed disk. The
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FIGURE 5. Measured velocity profile of the non-dimensional components u =v,/2r, w=v,/
Q2r and v=v,/82r at r =1.0cm for Re; =7.40. The lines are the corresponding components
for infinite disks extrapolated from Joseph’s numerical solution. The error bars are of the same
order as the symbols’ dimension.

axial component, which is maximum at z = H/2, shows that the flow is drawn axially
towards the rotating disk, ensuring continuity in the flow. Finally, the azimuthal com-
ponent is linear from one disk to the other, as was observed at low Reynolds number
by Bien & Penner (1969). We observe that, at the boundaries, the velocity components
(apart from the azimuthal one on the rotating disk which is expected to be non-zero)
do not go to zero as they should: this is an effect of the scattering volume finite size,
which could be reduced by focusing the incident and scattered beams. We repeated
the same procedure for a higher Reynolds number, increasing the concentration of
water in the sample in order to obtain a lower viscosity, also measured by homodyne
photon-correlation. The corresponding kinematic viscosity was v =10.3 x 107 m?s~!;
the angular velocity of the disk was fixed at £2 =5.32 Hz, so we obtained a Reynolds
number Re, =104. Also in this case, we maintained a fixed radial distance of
R=1.0cm for the three scattering geometries. The results for the velocity field
components are plotted in figure 6. For this higher Reynolds number, the radial and
axial components do not show the symmetry with respect to z = H/2, existing at Rey,
and the azimuthal component is no longer linear.

To compare the flow for finite disks with that for infinite disks at the small Reynolds
number Re;, we have plotted the corresponding velocity field components for infinite
disks on top of our experimental results. To this end, we interpolate the numerical
solution found by Joseph (1990) for the functions f and g of the similarity equations
(2.1): the three velocity components so obtained are plotted as a solid line in figure 5.
For Re < Rec we expect, from Brady & Durlofsky’s study, that the flow for finite
disks is of the similarity form in the region near the axis. In particular, recalling the
results reported at the end of §2, at Re=7.4 we expect that this region extends far
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FIGURE 6. Measured velocity profile of the non-dimensional components u =v,/2r, w=v,/
2r and v=u,/2r at r =1.0cm for Re, =104. The lines are the corresponding components
for infinite disks extrapolated from Joseph’s numerical solution. The error bars are of the same
order as the symbols’ dimension.

beyond r =0.2L, which is the radial distance where we performed the measurements.
As figure 5 shows, for Re; our experimental data are surprisingly consistent with
Joseph’s data.

On the other hand, at Re > Rec, Brady & Durlofsky found that the flow for a closed
end only qualitatively resembled Batchelor solution, consisting of two separated boun-
dary layers close to the disks and a core rotating as a solid body. This is just what
our data (figure 6) show for Re = Re,: the azimuthal velocity follows that behaviour,
while there is no longer consistency between the experimental data and the similarity
solution interpolated for Re =104 from Joseph’s data.

In conclusion, we have implemented an heterodyne light scattering setup in order
to measure the velocity field of swirling flow with a fixed and a rotating disk for
a closed end condition. For two different Reynolds number, we measured the three
components of the velocity field by making a scan along the gap, in the vicinity of
the axis of rotation. Brady & Durlofsky studied the swirling flow for finite disks and
found that the solution is of the similarity form for Re < Rec in a region near the
axis, which gets smaller as Re increases. Our results for Re; < Rec, performed in the
vicinity of the axis, are in very good agreement with a numerical solution of the simi-
larity equations. Besides, Brady & Durlofsky found that, for Re > Rec, there is no
longer agreement between the finite and infinite disk solution anywhere in the flow
domain, but the closed-end flow resembles qualitatively the Batchelor solution near
the axis. Again, our results for Re, > Rec validate the theoretical predictions, as the
azimuthal velocity shows a core rotating as a solid body and two boundary layers,
which is the typical behaviour described by the Batchelor solution, while there is no
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longer agreement between our data and a numerical solution of the corresponding
similarity equations.

We wish to thank F. Zamponi for having designed the cell used in the experiment
and for useful discussions; we also thank G. Bolle, M. Pallagrossi, C. Piacenti,
A. Salvati and Md Islam Deen for technical assistance.
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